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Multiple-line-of-sight tunable diode laser absorption measurements of the shock-train structure inside a model

scramjet isolator are described. Understanding the shock train is important when considering the design of isolators

to prevent unstart aswell as dealingwith heat transfer. Results from experimental studies such as this one canbe used

to help refine and validate the computational fluid dynamicsmodels that are used in isolator design. Interpretation of

the data collected is complicated because of the unsteady nature of the shock train. First, the gigabytes of acquired

data are integrated on a scan-by-scan basis to form absorption-versus-time plots that can be used to determine the

shock oscillation power spectrum and amplitude. The shock train is found to oscillate about its mean position with a

peak-to-peak amplitude nearly equal to the equivalent duct diameter of 5.75 cm and with a power spectrum largely

confined below 100 Hz. Next, developing an understanding of fundamental features of the flow requires that some

form of intelligent feature extraction is used. This is difficult because the flow features are not simply periodic but

involve a multitude of frequencies. Here, k-means data clustering is used to reduce the information to shock

structures corresponding to various shock-front locations in the scramjet isolator as a function of backpressure.

These clustered data sets are then used to extract path-averaged (transverse direction) static temperatures, static

pressures, and water concentrations as a function of streamwise position that can be compared with path-averaged

computational fluid dynamics computations. The results indicate that the computational fluid dynamics over-

estimates the shock spacing by 45% and that the path-averaged temperatures and pressures show a factor-of-2

variation more than indicated by the computational fluid dynamics simulations. These results can be used to help

improve the computational fluid dynamics computations of the shock-train structure.

I. Introduction

T HE previous paper [1] described the design, testing, and initial
experimental results of a test campaign to measure the static

pressure, static temperature, and density variations in a supersonic
shock train of a model scramjet isolator using diode laser absorption.
This experiment used 16 different lines of sight (LOS) to probe a
region of 7.62 cm (3 in.) in length inside the isolator using three
different spectral regions (1391.8, 1392.6, and 1396.4 nm) of the
�1 � �2 vibrational band of water. In the previous paper, only the
flow results with no backpressure were shown, because the goal was
to compare the tunable diode laser absorption system (TDLAS)
results with either pressure transducer measurements or to rea-
sonably accurate flow simulations (static temperature). This was
done to assess the overall accuracy and precision of the TDLAS
system. Here, the goal is to characterize the shock-train structure in
terms of its oscillation frequencies and oscillation amplitude, as well
as to determine streamwise profiles of the shock-train structure for
static pressure, temperature, andwater concentration. The oscillation
frequencies determined will be very different from a single-point
transducer because the motion of the shock front is what is being

measured, not the variation at a single point of temperature, pressure,
or absorption. The streamwise profiles that are obtained are unique,
because (unlike wall measurements, which are blurred due to
boundary-layer effects) the TDLAS results are indicative of the in-
stream flow conditions.

The layout of this paper, to help address the issues raised in thefirst
paragraph, is as follows. First, for completeness so that the reader
does not have to always flip back to references in Part 1 [1], the first
section gives a brief overview of the experimental setup. Next, the
automated data analysis algorithm that is used to compute peak
areas from the large volume of raw data is described. Because the
algorithm integrates single scans of data (1 ms in duration), the
quality of these scans is shown and the process used to expel outlier
spectra is described. Because the algorithm uses a single Voigt line
shape to represent composite line shapes, the accuracy of the
algorithm is revisited using the same simulation technique as Part 1,
but for prototypical changes in pressure and temperature found in a
shock structure. Finally, the data processing section ends with the
absorption-versus-time plot, which shows the shock-train motion
through the observation window in the isolator. The data processing
section is then followed by an analysis of the power spectrum of the
shock-train oscillations, the amplitude of the fluctuations, and their
comparison with literature.

The final two sections focus on obtaining the streamwise profiles
of static pressure, temperature, and water concentration as a function
of backpressure. Although it is possible to look at single-scan results
at particular instants in time, optical turbulence (wander and/or
diffusion of laser light due to density and/or temperature gradients) as
well as the volume of the data set make it difficult to draw good
conclusions about the shock structure without averaging. It is
therefore necessary to use techniques that will automatically sort the
data into similar flow features that can be averaged together. This
also significantly improves the signal-to-noise ratio and enables
more precise determination of flow properties. Here, k-means data
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clustering [2] is employed to find these fundamental flow features.
This use of k-means data clustering shares some similarities with
prior work that has used pattern-factor analysis to characterize
temperature nonuniformity in gas-turbine engines, and such
approaches are becomingmore important when interpreting the large
time-varying data sets generated by diode-laser-absorption-based
diagnostics. After the data clustering has been performed, it becomes
possible to compute path-averaged static temperature, density, and
pressure from the absorption data. These results are then compared
with computational fluid dynamics (CFD) simulations through
numerically computing the path-averaged results.

II. Experimental Overview

Abrief reviewof the experimental geometry is givenhere. Figure 1
shows the experimental setup and the direct-connect test facility of
research cell 18 at U.S. Air Force Research Laboratory (AFRL),
Propulsion Directorate, Aerospace Propulsion Division (RZAS).
The direct-connect test facility consists of a natural-gas-fueled
vitiator (1), interchangeable facility nozzle (2), modular isolator (3),
modular combustor (not shown), and a 3.5 psia continuous-flow
exhaust system (7). For the current study, the combustor was
removed and replacedwith a large valve (6) that was used to simulate
the pressure rise associated with combustion. The TDLAS hardware
was attached to the isolator through purge boxes that eliminate
ambient water in the portion of the paths outside the flow region, and
the beams were projected into the isolator through quartz windows.

Figure 2 shows a view of the measurement plane with the 16 LOS
being used to measure the shock train. The flow direction is from left
to right and themeasurement plane lies at midheight in the isolator in
the third direction. As the reader can see from Fig. 2, the setup
consists of 14 LOS nearly oriented perpendicular to the streamwise

x flow direction. The reason that this layout was chosen was that the
streamwise direction is the onewith themost significant variations in
pressure, temperature, density, and velocity. Therefore, the 14 LOS
spaced approximately 5 mm apart in this direction provide good
sensitivity to these changes. The data acquisition system collects data
in a semicontinuous fashion as a backpressure valve is slowly closed
to push the shock front forward through the isolator. Variations in
absorption will be observed as the shock train passes through the
window region being probed, due to changes in static temperature,
density, and pressure. The reason for this data-collection scheme is
that digitizers generate approximately 100 MB=s of raw data. The
currently available commercial hardware cannot achieve that data
transfer rate to the hard disk. In addition, during the test each 0.2 s
sequence of data was processed and an estimate of the flowfield was
displayed to the user every 5 s to provide feedback as to the shock
position in the window. Therefore, one complete cycle of data
acquisition occurred every 5 s and contained 0.2 s of continuously
sampled data at 1 kHz for each of the 16 channels.

In this paper, the analysis will focus on four sets of data labeled
runs AB, AC, AF, and AG. The vitiator settings as well as the nozzle
Mach number, water mole percent, and the Reynolds number for
each case are shown in Table 1. The flow facility provides the
capability to preheat the air using electric heaters before vitiation or it
can be input to the vitiator at ambient temperatures. The remaining
increase in total temperature was achieved using the combustion of
natural gas. The Reynolds number has been computed using the
equivalent duct diameter (5.75 cm) for a rectangular duct with cross
section of 3:81 � 10:16 cm. More details about the experimental
setup and run conditions can be found in Part 1 [1].

III. Data Processing

This section focuses on obtaining the absorption peak areas that
are needed to determine the shock-train structure in the previous
section. The data are processed on a scan-by-scan basis, and so it is
important to first illustrate what the signal-to-noise levels are for a
single scan and to then describe the algorithm that is used to process
the data. Several important points that are addressed are the issues of
outliers and the ability to fit composite line shapes with a single Voigt
line shape. Finally, the section ends by presenting the absorption-
versus-time plot that is an approximate illustration of the change
in absorption as the shock train moves through the measurement
window.

A typical data set consisted of 30 cycles of 0.2 s continuous data
segments that were collected over approximately 2.5 min while the
shock train was slowly advanced through the isolator by gradually

Fig. 1 Supersonic combustion test facility: a) schematic and
b) photograph indicating 1: vitiator, 2: facility nozzle, 3: TDLAS

hardware, 4: isolator, 5: extension, 6: backpressure valve, and 7: exhaust

line.

Fig. 2 The 14 lines of sight that are used to probe the 8-cm-longwindow

region in the isolator superimposed on a shock structure generated from
a CFD simulation. The measurement plane is at midheight inside the

isolator.
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closing a control valve to increase the backpressure. Because each
LOS was sampled at 2.5 million samples/second with a 14-bit
digitizer, the length of the data set is quite large: approximately
600 MB, including the reference and etalon channels. One approach
toward dealingwith these large data sets is to simply time-average the
data before processing the TDLAS data. This is what was done in
Part 1 [1] when dealing with no shock being present in the window.
However, because of the shock-front unsteadiness, this is not
possible here. Instead, it was necessary to process these data on a
scan-by-scan basis. The first step in the data processing was to
generate the absorption spectrum from the raw TDLAS data using
the reference and etalon data. Figure 3 shows single-scan data
recorded near the shock front for each spectral region being probed.
As the reader can see, there is noise present in the data due to several
sources: optical turbulence, detector noise, and laser turn-on noise.
The figure also shows the residuals from a multipeak constrained
Voigtfit that has been used tofit each spectral region. Clearly, the data
are of sufficient quality that good estimates of the peak area can be
obtained to determine whether the shock is present in the window
without the need for averaging.

As previously discussed in Part 1 [1], the processing here is using a
single Voigt line shape to approximate a measured spectrum that, in
the simplest sense, consists of multiple Voigt peaks because of
inhomogeneities in static temperature, pressure, and water concen-
tration along the line of sight. As can be seen in Fig. 3, as well as in
Fig. 4, this approximation should be adequate to obtain accurate peak
areas. However, the measured path-averaged static temperatures,
pressures, and water concentrations can be significantly different
from a particular point in the flow. In Fig. 4, the path-averaged static
temperature and pressure have been computed from a cross section of
the CFD simulation of the shock-train structure. A Boltzmann plot
was used to compute the path-averaged temperature from peaks a–d
(see Part 1 for line parameters), and the width of line a was used
to estimate the path-averaged static pressure. Clearly, the static
temperature and pressure are greater in the core region than the path-
averaged quantities, as expected. To resolve the spatial variations
occurring in the cross section of the shock, either a model of the
flowmust be assumed or additional LOSmust be used. However, it is
still possible to compute the path-averaged quantities from the CFD,
as done here, and to then compare themwith themeasurements. This
may be the best solution when attempting to validate simulations
because of instabilities often due to limited data in tomographic
reconstruction.

The next step in this process was to build an automated algorithm
that could go through the data file and integrate for each time step the

spectra in Fig. 3. There are several issues that must be addressed
when designing this automated algorithm. The first is that when
using a multipeak Voigt fit the parameter space must be constrained
so that the optimization algorithm used does not walk off into a
space of unreasonable values. Here, this was done using a standard
constrained Voigt peak-fitting routine (Levenburg–Marquadt),
available in Igor Pro [3].

A second, and perhaps more important, aspect is that it was
discovered that on the order of one out of every several hundred
measurements was significantly distorted from the spectra shown in
Fig. 3. The most likely cause is that it is associated with significant
beam walk when the shock front is oriented across a line of sight.
Prior efforts that did not examine single-scan data would probably
not observe these effects, because they are rare and time-averaging
would eliminate them.However, it was desired for these outlier peaks
to be flagged and eliminated from the subsequent analysis. Two
different algorithmswere used. Thefirst was a nonlinearmedianfilter
[4]. All 16 lines of sight were rank-ordered based on their integrated
absorbance for the strongest spectral line in each spectral region, and
the median value was found. If any of the integrated absorbances

Table 1 Run conditions

Run Incoming air temperature, K Total temperature, K Total pressure, psia Water mole percent, % Reynolds number

AB 300 667 50 3.03 9:1 � 105

AC 300 1016 50 6.93 4:6 � 105

AF 589 667 50 1.11 9:1 � 105

AG 589 1016 50 4.94 4:6 � 105

Fig. 3 Single-scan results from the three spectral regions made when

the LOS is near a shock front. The data are taken sequentially, with the
first spectrumbeing collected in the first 0.33ms, the next spectrum in the

time bin 0.34–0.66 ms, and the final spectrum at 0.67–1.0 ms. The peak

fits (solid black line) and the residuals (upper boxes) are also shown.

Fig. 4 Pseudo color image of a) static temperature, b) static pressure in
the vertical cross section of the isolator when a shock is present (from

CFD simulation) along with the LOS, and c) simulated composite line

shape and curve-fit residuals from a single Voigt line shape.
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exceeded a specified distance from the median value, then that time
was specified as an outlier. This procedurewas found to be very good
at identifying outliers, because if an outlier did occur, only one LOS
would usually see it. The second approach was to determine an
average chi-square from 40 random samples of the data set. If the chi-
square after fitting the peaks exceeded a predetermined threshold,
then the particular time was labeled as an outlier. When creating the
absorption-versus-time plots, the outlier point was replaced by
the median value; however, when performing the data clustering
described later, the outlier was simply ignored when creating the
cluster average. Another important use of the outlier-detection
algorithms was that they provided excellent feedback as to whether
the user correctly set up the initial guess parameters for the curve-
fitting operations.

A final important aspect of the automated analysis was the speed
with which the data could be processed. This represents a significant
challenge to the use of large multiplexed TDLAS systems if transient
events such as shock-train oscillations are to be measured. The file
sizes for the data being processed for this paper ranged from
650 MB–1.35 GB and consisted of 6000–12,000 single-scan
measurements. Because of the large file size, the datawere broken up
into smaller groups that would then be loaded sequentially from the
disk. Here, the curve-fitting was the time-limiting step, and it took
much longer for the program to compute the curve-fit than the disk
reads/writes. It took a HP5750 with an AMD Athlon 64 X2 with
2 GB of RAM approximately 4–8 h to perform the 300,000–600,000
curve fits that were required to generate the absorption-versus-time
plots. This time could be significantly lowered through the use of
parallel processing, because each LOS could be assigned an
individual processor; however, the computational cost was relatively
low and so this approach was not used. Because of the time required
for computing the data set, it was necessary to make the algorithm
fairly robust.

The data from run AB are shown in the grayscale image of Fig. 5.
The time axis is shown, with breaks between data segments being
represented using a dashed black line, and the axis is labeled based on
the scan number within the data set. The data are sampled at 1 kHz
rate within each 0.2 s segment, and the segments are separated by
approximately 5 s intervals (dotted lines in Fig. 5). Because of the
time gaps, the 6000 scans are measured over a time period of 156 s.
The x axis is the streamwise position for each line of sight at the
center of the isolator referenced to the front of thewindow (the actual
positions can bemost easily seen in Fig. 6). The particular absorption
line plotted here is the 7185:6 cm�1 line described in more detail in
Part 1 [1]. This line results from the absorption from a lower state
with a ground-state energy of 1045 cm�1 and is relatively insensitive
to temperature variations in the flow (T � 400–600 K). Therefore,
this plot is fairly indicative of the density variations that are occurring
in the flow. As can be seen in the figure, a variety of changes are
occurring in the portion of the isolator being probed as time
advances. Initially, the leading shock is further downstream of the
window and is represented by thewhite region in Fig. 5. As the shock
passes through the window, the absorption increases because of the
higher density of the flow, and this region is represented by the black
area in the figure. In this particular data set, the facility operator
initially closed the backpressure valve too fast and pushed the shock
past thewindow for the times corresponding to scan numbers of 400–
600. However, a much slower variation of the backpressure valve,
and hence the shock front in the isolator, was achieved from scans
from 1800 to 5000. Also shown in Fig. 5 is the outlier plot cor-
responding to the absorption-versus-time plot. Here, an interesting
result is the correlation of the outliers with the position of the
shock train in the observation window. If the shock front is either a
few inches upstream or downstream of the window, the outlier
concentration is almost nonexistent. However, when the shock train
is visibly present in the window, the number of outliers increases
significantly. This tends to suggest that the presence of outliers is
associated with an increase in gross beam walk, due to the presence
of the shock front.

IV. Time-Resolved Measurements

This section focuses on the temporal variations on the flow. By
monitoring multiple lines of sight simultaneously, it is possible to
determine the shock-front oscillations and amplitudes. These results
are then compared with previous measurements that have been made
using more conventional techniques such as high-speed pressure
transducers. It should be emphasized here that the measurements
follow the shock front and therefore involve multiple lines of sight
that track the front location. This is different from conventional
measurements that often just measure, for example, static wall
pressure at a single location.

Figure 5 shows all of the data for run AB, and the shock is partially
in the observation window in multiple time segments. One such
segment from2000–2200 is expanded in Fig. 6. Because it is one data
segment, the data were taken continuously at a 1 kHz rate (1 ms scan
separation), so that the shock-front oscillations can be observed.
Here, the front of the shock train is approximately located at 4 cm
and oscillates about that position. Also shown in this figure are two
points in time at which the shock is located at similar locations in the
window. The profiles are similar, with the frequency-integrated
absorption increasing by a factor of 3 from the preshock region to the
peak of the first shock.

The solid black line in Fig. 6 was obtained using a peak-finder
algorithm. This algorithm works by searching the smoothed first
derivative of the data for a zero crossing while also examining the
sign of the smoothed second derivative to differentiate between a
maximumandminimum. Itworkswell when applied to data inwhich
thefirst shock is present. However, as can be seen in Fig. 6, at the time
of approximately 48 ms (when the beginning of the first shock is no
longer present), the algorithm fails at locating the peaks properly.
So complete processing of the data set using the peak-finder
algorithm is not possible. Instead, in the next section, this problem
will be addressed using k-means data clustering.

The shock-front curve allows the frequency content of the shock
position to be analyzed. To determine the power spectrum, the mean
position is subtracted from the curve and then this relative position
curve can then be Fourier-transformed to yield a power spectrum.
This is shown in Fig. 7 along with the relative position curve
corresponding to the shock front. It should be emphasized here that
the power spectrumobtained in thismanner is very different fromone

Fig. 5 Plots of a) absorption versus time for the absorption line at

7185:6 cm�1 for run AB (dashed lines indicate the 5 s gap between data

segments, and so the 6000 scans took approximately 156 s to complete;

within each segment the data are sampled at 1 kHz for 200 scans) and

b) outlier corresponding to the absorption-versus-time plot.
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obtained by just examining the power spectrum of a single LOS. In
the case of a single LOS, it is not possible to know where the shock
front is located: only the amplitude of the frequency-integrated
absorption is available. As can be seen in Fig. 6, if one were to
examine the frequency content of the LOS located near x� 2 cm, it
would have frequency content very different from one located at
x� 4 cm. In addition, the immunity to turbulent fluctuations of the
flow will be much less than in the case of using a single LOS.

The subject of shock-train oscillations has only been studied in a
limited manner, and much about the unsteadiness of these flows is
still not understood [5]. However, several studies have examined the

frequency and the amplitude of these oscillations [6,7]. In the case of
the study by Ikui et al. [6], the peak-to-peak amplitude of the shock
oscillations was found to be on the order of the equivalent duct
diameter. Here, the data in Fig. 7 indicate that the peak-to-peak
shock-front oscillations are approximately 4 cm. This is nearly the
equivalent duct diameter (5.75 cm) for the 4 � 10 cm rectangular
cross section of isolator, and so this result is in good agreement with
Ikui et al. In addition, they found that the frequency oscillations
consisted of several strong peaks of several tens of hertz and several
hundreds of hertz. In the current study,most of the primary frequency
content of the shock oscillations is contained in frequencies below
100 Hz; however, two–three smaller components are above 100 Hz.

V. Data Clustering

This section first describes the reason for using data clustering as
well as going over the k-means algorithm that is used here. Then it
applies the method to the experimental data and also relates the
derived clusters to the mean backpressure observed at the back-
pressure valve.

Figure 5 shows a grayscale image representing all of the
absorption data for the 7185:6 cm�1 line collected for run AB
conducted during the measurement campaign. This set of data is
quite large, and although it is possible to identify features by looking
at individual times, an automated technique is desired that can group
similar data together to achieve an enhancement in signal-to-noise
ratio as well as finding similar features. Here, the likeness of the
different times depends on the shock location in the window. For
example, a detailed examination of two different time images shown
in Fig. 6 indicates that these correspond to similar shock locations in
thewindow. Ideally, averaging together all times when the shock is at
nearly the same position in the window will improve the signal-to-
noise ratio and highlight the features of the shock train. Obviously,
a sequential time average would grossly distort the discrete nature
of the shock structure.

Avariety of methods can be used to perform the sorting of the data
set such as peak-finding. As mentioned previously, peak-finding
works well if the first shock is present in the window but fails as this
shock moves outside the window region and only higher-order
shocks are present. Instead, data clustering, also known as vector
quantization, has been used here to perform the selective averaging.
A similar approach has also been used previously in the interpretation
of large-eddy simulations [8]. The essential element of data
clustering is to subdivide the data into classes. The members of
these classes are determined to bemost similar to each other based on
a distance metric. The distance metrics that will be used in the
following analysis are based on the Minkowski metric [2]:

dp�xi;xj� �
�Xd
k�1
jxi;k � xj;kjp

�
1=p

(1)

where xi and xj are vectors in a d-dimensional space, and p is an
exponent that defines the particular Minkowski metric. Here, p� 2
has been used, and it corresponds to the classical definition of
the distance between vectors in three-dimensional space called the
Euclidean distance. In addition, the p� 1 metric known as the
Manhattan distance has been used as well, and it is the sum of
absolute differences for each component of the vectors and will not
be as dominated by outliers. A variety of clustering algorithms exist
that can be used to cluster a data set [2]; however, one of the
most common and widely available algorithms is the k-means
method that is used here. The k-means algorithm can be described
through the following four steps:

1) Choose k cluster centers through either random selection of k
vectors (patterns) from the data set, random partitioning of the data
set, or predefined vectors given by the user.

2) Assign each vector to the closest center using the distance
metric.

3) Recompute the cluster centers by taking the mean of the current
cluster members.

Fig. 6 Absorption-versus-time plot for one data segment from Fig. 5

when the shock is partially in the observation window. The solid black
curve indicates the shock front. Also shown are two plots of the 14 LOS

measurements at two particular instants of time when the shock front is

at a similar location in the window.

Fig. 7 Plots of a) position of the shock front relative to its mean position

and b) power spectrum corresponding to the oscillations of the shock

front.
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4) If convergence criteria are not met, go to step 2. Typical
convergence criteria are no (or minimal) reassignment of patterns to
new cluster centers or a minimal decrease in squared error.

As can be seen from the outline of this algorithm, it is a relatively
simple algorithm, which is the reason for its popularity, and it is very
computationally efficient, because its computational time scales in
direct proportion to the number of clusters and the data set size. In
addition to the distance metric, the outcome of the clustering
algorithm will also be significantly influenced by the number of
clusters that the user decides to use, as well as their initial seeding.
So when deciding upon the optimal clustering strategy using the
k-means technique, it is useful to perform multiple clustering
approaches in which the number of clusters, initial seeding, and
distance metric are varied for the data set under consideration. After
these multiple approaches are used, physical understanding can be
used to assess the optimal clustering of the data set. Here, in this
problem, because much is known about the shock structure from
CFD simulations as well as previous work that has been done on
shock-train structures, it is straightforward to interpret the results.
For more complex problems, a variety of validation measures as well
as visualization techniques exist that can aid in determination of the
optimal clustering strategy; however, they should only be used in
conjunction with physical insight [9,10].

Figure 8 shows the data clusters that have been derived from Fig. 5
using the k-means algorithm. The vectors that have been used for
data clustering are the 14-dimensional vectors corresponding to the
frequency-integrated absorption for the 7185:6 cm�1 line for each
line of sight. Here, the Euclidean distance metric was used, the initial
seeding was done through random partitioning of the initial data set,
and the termination criterion was that less than 0.1% of the members
switched class membership. Each cluster in Fig. 8 is composed of an
average of 100 ormoremembers of the data set in Fig. 5.When using

data clustering, it is important that the data set has a sufficiently large
number ofmembers so that the clustering can be performed.Here, the
maximumnumber of clusters chosenwas 20,which ismuch less than
the 6000 members of the data set. The k-means algorithm has also
been run in several different methods for this data set, including
changing the number of class members and using the Manhattan
distance instead of the Euclidean distance. In all cases, the general
features of the shock trainwere always observed (i.e., clusters similar
to C6–C13 are in the final data set); however, there can be some
differences for finer-scale features such as C14–C17, as well as how
the algorithm groups the data in clusters C1–C5 and C17–C20. One
important observation is that the Manhattan distance metric tends to
filter the data so that more clusters correspond to cases such as C14
and C15 than when the clustering was performed with the Euclidean
distance (clusters C1 through C5 typically decrease in this case if
the number is fixed at 20).

The clusters have been presented as a function of average
backpressure, which does a good job of ordering the clusters based
on the shock position in the window. However, there are some
discrepancies that are due to the method with which the average
backpressure was determined. Calibrated diaphragm pressure trans-
ducers were used at two points located near the backpressure valve
but were only sampled at 10 Hz. Because the absorption mea-
surements were carried out at 1 kHz rates, this represents only a
coarse measurement of backpressure. In addition, shock reflections
near the measurement ports could also affect the measured back-
pressure. The correlation with the backing pressure is actually quite
remarkable given that the backpressure differences between some
clusters is less than 0.1 psia.

An additional characterization that can be easily applied is to look
at the standard deviation present in the data used to form the cluster
mean. Figure 9a shows cluster 10 along with error bars (not the
standard errors) representing the standard deviation of the data used
to form the cluster mean. This gives an indication of how the
instantaneous results can vary from the mean value. The largest
variations occur near the peaks of the shocks and can be expected
because of the discrete nature of the spatial sampling with only 14
lines of sight. Also shown in Fig. 9b are two ways of computing the
cluster average. In the first case, the spectra of the clusters have been
averaged and then aVoigt-peak-fit routine has been used to determine
the area, and in the second case, the integrated peak areas have been
averaged. In Fig. 9b, the error bars for the integrated-then-averaged
case are computed through the standard method of dividing the
sample standard deviation by the square root of the number of
samples, which is the standard deviation of the mean. In the case of
the averaged-then-integrated case, the error bars correspond to the
standard fit errors determined from the Hessian matrix. Note that in
either case, very similar results are obtained and the sizes of the error
bars are nearly equal as well. The averaged spectra are used to
determine the static temperature and static pressure (from the line
widths) in the next section. Ultimately, though, it is quite apparent
from Figs. 7 and 8 that the clustering operation has yielded results
compatible with known shock-train structures and CFD simulations.
A more detailed comparison will be given in the rest of the paper.

VI. Path-Averaged Results

This section begins by examining what the cluster-averaged
spectra look like and showing that it is possible to extract meaningful
measurements of the path-averaged static pressure from them. It also
shows that the cluster averaging preserves the pressure shift to the
level of being able to resolve the streamwise profile of the shock train.
Then the data is processed for the run conditions detailed in Sec. II,
followed by a discussion of the quality of the data through such
techniques as repeated runs.

As previously mentioned, the spectra for each cluster are averaged
for each spectral region of interest. Figure 10a shows an example of
what the averaged spectra look like both before and after the shock
front for the absorption line centered at 7185:6 cm�1. Both the peak
areas and the linewidths increase significantly in the higher-pressure
and higher-temperature region after the shock. This shows that it is

Fig. 8 Data clusters derived from the data set in Fig. 2. Clusters are

ordered versus average backpressure.
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possible tomeasure not only the temperature andwater concentration
of the flow, but also static pressure through knowledge of the
collisional broadening parameters.

Also shown in Fig. 10b is the sensitivity of the line center position
to pressure shifts that occur in the flow. The similarity between
cluster 10 in Figs. 9 and 10b is good and similar results were found
for other clusters in Fig. 8. Measurement of this quantity, though,
requires the pressure-shift parameter be known as a function of
temperature and gas composition. Currently, such measurements are
only sparsely reported in literature and very little has been reported
on the temperature dependence of this parameter, and so a full
analysis has not been attempted here. Also, as can be seen in Fig. 2,
not all of the LOS are perpendicular to the flow direction, which
means a small Doppler-induced shift will occur. At a nominal flow
velocity of 800 m=s and a tilt angle of 2 deg into the flow, the
corresponding Doppler shift is 0:0007 cm�1, and so these effects
must also be taken into account. Finally, the changes in wave
number (0:001 cm�1 or 30 MHz) that occur require accurate
calibration of the frequency axis if quantitative results are to be
obtained. In this experiment, an etalon with a free spectral range of
2:000� 0:002 GHz at 1550 nm was used, resulting in a frequency
resolution better than (0:000007 cm�1 or 2 MHz). Because of the
difficulty of these experiments, no further analysis of the pressure-
shift data has been made, but the present results suggest that this
could be used in more refined studies.

As previously discussed in Part 1 [1], a Boltzmann plot is used to
obtain the temperature from the peak areas of four different spectral
lines, and then this temperature is used to constrain the Voigt-peak-
fitting algorithm to obtain a measure of the pressure broadening.

The results of doing this for the clusters are shown in Figs. 11 and 12.
The static temperatures and pressures that have been obtained are
path-averaged in a direction largely perpendicular to the streamwise
flow direction, as indicated in Fig. 2. This path-averaging is not a
simple mass-weighted averaging of the flow quantities because of
the presence of the exponential Boltzmann probabilities, and it is
necessary to compute absorption maps such as Fig. 2 when
comparing CFD computations. Because the data is path-averaged, it
should not be interpreted as a measurement of the temperature or
pressure at a particular point in the flow. However, the data reported
here clearly capture the significant flow variations occurring in the
streamwise direction. In fact, the path-averaging that takes place
when collecting this data is the same as would occur when using a
schlieren system to visualize the shock structure. The difference here
is twofold. First, a schlieren system would typically illuminate the
entire side view of the window and so a two-dimensional image
would be formed. Here, hardware restrictions at the current time
prevent us from implementing such an approach. However, in
contrast to schlieren, it is much easier to derive quantitative mea-
surement of path-integrated pressures, temperatures, and water
concentrations, because they are directly related to absorption
measurements. In schlieren, the total density is related to the
derivative of the refractive index, and so obtaining quantitative
measurements is very difficult in a noisy environment such as a
shock train.

The variations or errors from the measured values reported here
depend on multiple aspects when interpreting the results. First, and
most straightforward, are the errors associated with fit errors of the
absorption peaks. As can be deduced from Figs. 9b and 10a, these
errors are quite small and are smaller than the symbol size in Figs. 11

Fig. 9 Plots of a) average values for cluster 10 plus error bars

representing the standard deviation (not the standard deviation of the
mean) that illustrate the variability of the cluster data set and b) different

methods of computing the cluster average along with standard error

bars.

Fig. 10 Plots of a) cluster-averaged spectra for a LOS in front of the

first shock andLOSafter the shock front andb) the shift of the line center

for cluster 10 (FWHM denotes full width at half-maximum).
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and 12. In addition to these errors, there exist variations in the line
parameters used to perform the Boltzmann plot as well as the
broadening parameters used to determine the pressure broadening in
the literature. Here, recent studies as well as the HITRAN 2004
database were used [11–14]. These sources can vary by several
percent and so necessarily will impact the absolute accuracy. This

error can be propagated through the Boltzmann plots and Voigt
fits to obtain estimates on the absolute accuracy, as done in Part 1 [1].
These issues can also be addressed by comparing with known
measurements, as was done in Part 1, which found the TDLAS
measurements for the Mach 2 flow case to be in agreement with
known standards to within 2%. The final sources of error involve the
clustering process itself. Because it is an averaging process, Figs. 11
and 12 present the mean flow quantities. As can be seen in Fig. 9a,
the instantaneous flow properties can vary significantly from
these values. However, only comparison of mean flow values with
computations as well as literature is currently possible, because of
the difficulty in doing time-dependent calculations ormeasurements.
In this case, the issue is how the statistical variation of theflow affects
the cluster average. To address this question, the run-to-run vari-
ability in the measurements was determined, as shown in Fig. 13 for
cluster 10. Because runs AB and AF (and, in a similar fashion, AC
and AG) have inflow properties similar to the isolator, as shown in
Table 1, they can be compared on a point-to-point basis for
static temperature and pressure. Runs AB and AC were separated
by several hours from runs AF and AG on the night that the
measurements were being made. Both sets of runs used facility air
heated to different initial temperatures, thereby requiring different
amounts of vitiation to reach the same total enthalpy required for the
run condition. Different amounts of vitiation result in significantly
different water concentrations in the flow. As Fig. 13 shows, the
agreement between runs is excellent for cluster 10 and suggests
that the results are not dependent on the amount of water present in
the flow; that is, the measured static temperatures and pressures are
functions of the flow conditions. The average variation for the
temperature measurements is approximately 3% and for the case of
the static pressure is 5%. This variation will depend on the particular
cluster for which the run-to-run variability is being tested; however,
the numbers determined here are quite indicative of clusters C5–12,
in which the major variations of the shock are present. Also note that
some of this variability is not just due to the measurement process.
The facility air supply, natural-gas-flow controller, and the oxygen-
mass-flow controller exhibit an oscillation of approximately 1–2%
that could be partially responsible for the variations. Nevertheless, it
is quite remarkable that the measurements are so repeatable given the
complexity of the measurement environment.

VII. Discussion

The path-averaged measurements in the previous section can be
compared with wall pressure measurements, the literature on shock-
train structures, and CFD simulations of the flow. Before examining
the results in detail, it is important to review what are known to be
the key parameters that influence the formation of the shock train.
A shock train forms inside of a duct instead of a single normal shock
wave, because of the interaction between the shock wave and the
boundary layer along the wall surface [5,15–18]. This type of
interaction is strongly governed by theMach number of the flow and
the confinement factor �=h, where � is the undisturbed boundary-
layer thickness and h is the duct half-height [5]. The shock train has
been shown to transition from the ideal normal shock to a normal
shock train and then to an oblique shock train as the confinement
parameter and the Mach number increase with the transition to an
oblique shock train occurring for Mach numbers of 1.8–2.2,
depending on the flow confinement parameter [5,15,19]. In the
particular case under consideration here, the boundary-layer
thickness at the foot of the shock was not experimentally available
with the current setup. However, CFD simulations discussed later
can be used to place a lower bound of 0.3 on the confinement factor.
The reason that this is taken as a lower bound is that these simulations
did not include any surface roughness. However, the surface is rough
here, due to a thermal barrier coating that is used to protect isolator
walls during hot run conditions [20]. In addition, measurements of
the boundary-layer thickness at different points in the isolator during
situations in which no backpressure is present have found that
the CFD simulations often underestimate its thickness [21]. This
confinement factor combinedwith theMach number of the incoming

Fig. 11 Static temperature for the clusters from Fig. 6. Error bars

derived from the curve-fit errors are smaller than the symbol size.

Fig. 12 Static pressures for the clusters from Fig. 6. Error bars are

derived from the curve-fit errors are smaller than the symbol size.
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flow being nearly 2.2 indicates that the observed shock train is
likely oblique. The sequence of shocks is known to form in the core
flow due to an aerodynamic nozzle effect in which the boundary
layer effectively forms converging and diverging nozzles that can
accelerate the flow after a shock [5,16]. Therefore, the shock spacing
is directly related to the shape of the turbulent boundary layer and so
measurements of the spacing such as conducted here can provide a
sensitive probe of turbulence models used in modeling scramjet
isolators as well as other applications of supersonic duct flows.Many
more details about shock-train structure can be found in the excellent
review by Matsuo et al. [5] that will not be repeated here.

A. Comparison with Wall Pressure Measurements

Most early measurements of shock-train structures focused on
wall pressure measurements (often time-averaged), which are
relatively easy to conduct. Because of this, a wealth of information
exists on shock-train structures in the literature that relies on these
types of measurements [5]. Figure 14 shows the wall pressure
measurements in the isolator at one particular time during the course
of run AB. In this case, the shock front is located a considerable
distance upstream in the isolator. As is typically the case for wall
pressure measurements, little or no oscillations are observed as the
pressure rises from the foot of the shock [5]. This is because the
pressure measurements are insulated from the oscillations occurring
in the core flow region by the boundary layer. In contrast to this, the
absorption measurements are sensitive to the pressure changes that
are occurring along the entire width of the isolator and are therefore
going to most strongly reflect the changes in the core flow region.
This is the reason that the shock oscillations are clearly observed in
Figs. 11 and 12. A final aspect that can be inferred from Fig. 14 is the
comparison of the asymptotic values being measured in the shock
train. For example, as already discussed in Part 1 [1], the pressure
in the Mach 2 flow case agrees with the pressure transducer
measurements to an accuracy of 3%. Here, this good agreement can
be seen by comparing the static pressure at x < 10 cm of the shock in
Fig. 13 with the static pressure of cluster 1 in Fig. 10. In addition, if

the shock front is at its maximal distance forward in the isolator, then
the pressure in thewindow regionwill be approximately 21 psia. This
is in good agreement with cluster 20, for which the average pressure
from all 14 paths is 19.3 psia and represents a disagreement of 8%.
These two points (along with the computed mole percent, as detailed
in Part 1 for theMach 2 flow) provide the best independent measures
of the absolute accuracy of the measurements.

B. Comparison with Computational Fluid Dynamics Simulations

One of the goals for TDLAS measurements within our research
group is to use them to help validate CFD models that are being
used to model supersonic flows. The reason for this interest is the
potential of TDLAS to provide in-flight information about the
inflow properties of the engine as well as providing routine ground-
based diagnostics. Although it is limited by its line-of-sight
nature, significant information can still be gained through detailed

Fig. 13 Run-to-run variations in measured quantities for cluster 10: a) runs AB and AF and b) runs AC and AG. The error bars are based on the

standard deviation of values between similar runs. Also shown are the path-averaged measurements derived from the CFD simulation with the cubic

turbulence model in Fig. 15.

Fig. 14 The static pressure across the isolator from wall pressure

measurements. The two vertical lines indicate the position of the optical

probing window.
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comparisons with CFD, as will be discussed here for the case of the
shock train.

For this particular experiment, multiple simulations have been
employed that vary the backpressure condition as well as the
turbulencemodel withinCFD��, which is a general-purpose CFD
tool developed by Metacomp Technologies [22]. CFD�� uses a
finite volume numerical framework, with multidimensional total-
variation-diminishing schemes and Riemann solvers for accurate
representation of supersonic flows. Several types of Riemann solvers
are available; the Harten–Lax–van Leer–contact Riemann solver
with minmod flux-limiting was used in the simulations described
here.Multigrid acceleration is available to provide a fast and accurate
solution methodology for both steady and unsteady flows. A variety
of one-, two-, and three-equation turbulence models are available for
Reynolds-averaged Navier–Stokes (RANS) calculations, along with
large-eddy simulation (LES) and hybrid RANS/LES options. Unless
otherwise specified, turbulencewas modeled using the two-equation
cubic �-" model. This model has nonlinear terms that account for
normal-stress anisotropy, swirl, and streamline curvature effects.
At solid surfaces, an advanced two-layer wall function with equi-
librium and nonequilibrium blending was employed to reduce grid
requirements. The code supports both structured (quadrilateral and
hexahedral) and unstructured (triangle, prism, and tetrahedral) grids.
A message-passing interface is used to take advantage of modern
parallel-processing computers. The numerical solutions were con-
sidered to be converged based on the residual history and the
steadiness of the mass-flow rate. The mass-flow rate should not
change: that is, it should be constant along the isolator.

The numerical simulation was based on the rectangular isolator
test configuration in the AFRL/RZAS research cell 18 supersonic
wind tunnel. This is a direct-connect facility; that is, the isolator test
section is connected to the exit of the facility nozzle. The numerical
simulations were extended from the facility nozzle plenum to the
entrance of the isolator test section to provide the inflow conditions
for the isolator section. This practice obviates the need for ad hoc
profiles at the isolator entrance. The exit of the isolator section was
pressurized to create a choking condition in the isolator. Various
backpressure conditions were imposed to create a shock-train system
in the isolator. A no-slip adiabatic boundary condition was imposed
on the isolator walls. Because the isolator was assumed to be
symmetric along the centerline plane, only half of the plane was
computed in this study. The computational domain consisted of
768,000 grid cells. The grid was clustered to all solid surfaces at a
level appropriate for the use of wall functions (y� 	 30).

As can be seen in Fig. 15, both cubic and realizable �-" turbulence
models yield very similar shock structures in the plane that is being
probed. There are slight differences between the shock anchoring
points, and the realizable turbulence model yields a slightly smaller
spacing between the first and second shocks (7.8 vs 8.3 cm for the
peaks on the isolator centerline). It is quite clear from Figs. 13 and 15

that the measurements indicate smaller shock spacing (�4:3 cm)
than the computations. However, an exact comparison requires that
the absorption maps are computed as shown in Fig. 1, and the results
are then path-averaged in the correct manner. The results of this can
be seen in Fig. 13, which shows the path-averaged data computed
from the cubic �-" turbulence model shown in Fig. 15. To do this
comparison, the window must be shifted to a location such that the
first shock overlaps with measured data. This is a well-known
problem in comparing CFD results with experimental data for
shock-train structures [5,17]. In addition to shifting the observation
window, it is possible to photographically scale the CFD to reduce
the shock spacing. If this is done, it is found from clusters C9, C10,
C12, and C15 that the CFD must be shrunk by a factor of 0.55 (i.e.,
the CFD overestimates the spacing by 45%) in the case of the cubic
�-" turbulence model and by a factor of 0.62 for the realizable �-"
turbulence model. Additionally, Fig. 13 shows that the variations in
both path-averaged temperature and pressure are more significant
than computed in the CFD simulations. In particular, the temperature
difference between the first shock peak to the trough immediately
following it is from 2–2.6 times greater in the case of the mea-
surements, and for the static pressure, the measurements show a
variation that is 1.6–2 times greater than the CFD computation. The
first instinct is to assume that this means that the shock structures are
more intense than predicated by the calculations. However, this may
not be the case, because the measurements are path-averaged. For
example, it is possible that shock is wider than indicated in Fig. 15,
and this would lead to a larger path-integrated temperature and
pressure. Unfortunately, the measurement geometry in Fig. 1 is not
very sensitive to changes in the transverse direction, and so a
definitive answer to this question is not possible with the current
experimental setup.

That the CFD computation is not in agreement with the mea-
surements is not surprising given prior works that have attempted to
match CFD simulations to shock-train structure. One of the most
detailed studies by Carroll et al. [17] compared inflowmeasurements
of a normal shock train made using laser Doppler velocimetry with
simulations using the Baldwin–Lomax turbulence model and the
Wilcox–Rubesin turbulence model. Although both turbulence
models are thought to be not as good as themoremodern ones used in
the preceding simulations, theWilcox–Rubesin calculation captured
the shock-train structure well in the sense that the Mach number
contours agreed closely with the velocimetry measurements.
However, the Wilcox–Rubesin model and the Baldwin–Lomax did
not match the measured wall pressure rise. In that study, no inflow
measurements were made. It is also important to realize in that case
that the authors were dealing with a normal shock-train structure that
was relatively steady, because the inflow Mach number was 1.6 as
opposed to 2.2 in the current study. Here, unlike the case of Carroll
et al., the change in turbulence model made very little difference in
improving the agreement of the CFD simulations with the measured

Fig. 15 A pseudo color plot of the static pressure computed using CFD�� with two different turbulence models for a uniform backpressure of

19.89 psia. Also shown is the optical observation region indicated by the blck rectangle.
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data. This could be due to several more significant factors. One
problem that is well known is the influence of the surface roughness
of the thermal barrier coating. Previous efforts to model this surface
roughness correctly have not yielded satisfactory results, and using
an approximation that the isolator duct is smooth is clearly not
correct. This will influence the boundary-layer thickness and its
turbulence characteristics so that it can clearly influence the structure
of the shock train. Another aspect that has been raised in the literature
is that the computations done here, as well as the majority of
simulations of shock trains, involve the use of Reynolds-averaged
Navier–Stokes codes [5]. The problem is that the unsteady nature of
the shock oscillations, as discussed in Sec. IV cannot be captured
properly by the turbulence models using a Reynolds-averaged code,
and therefore such methods as large-eddy simulations or direct
numerical simulations are required to properly simulate the flow.
This problem will be more significant at higher Mach numbers,
because the flow unsteadiness increases substantially. In conclusion,
the disagreement between experiment and simulation is likely due to
a combination of factors: turbulence modeling, surface roughness,
and flow unsteadiness. Closing the gap between experiment and
simulation will require improvements on both fronts.

VIII. Conclusions

To our knowledge, this represents the first time-resolved
(millisecond) and spatially (5 mm) resolved inflow measurements
of static temperature, static pressure, and density of a supersonic
isolator shock train. In addition, this study represents one of the
largest simultaneous tunable diode laser absorption experiments
that has been performed at similar supersonic combustion facilities,
with 16 paths sampled over 3 spectral regions (48 spectra) at rates
greater than 1 kHz. This work lays the groundwork for under-
standing the effects of shock-train structure on TDLAS-based
mass-flux sensors as well as improving fundamental understanding
of the flow physics of these shock structures. This study used a
backpressure valve to generate the shock train, but this approach can
be applied to the study of precombustion shock-train amplitude and
frequency instabilities resulting from combustion. It was found that
the shock train oscillates with a peak-to-peak amplitude of approxi-
mately 4 cm, with a power spectrum with significant frequency
components below 100 Hz. This is in good agreement with
previous studies of shock-train oscillations. The use of data
clustering allowed substantial insight into the shock structure to be
made even though the flow was quite unsteady. This enabled RANS
CFD simulations to be compared with the cluster averages. Here, it
was found that despite the lack of complication of the shock train
being produced by combustion, an apparent discrepancy regarding
the streamwise shock spacing exists. This discrepancy is clearly
established because of the good experimental spatial resolution in
the streamwise direction. In addition, the variations in path-
averaged temperature and static pressure are found to be approxi-
mately a factor of 2 greater than predicted. Although the exact
sources of the differences are not known, it is quite likely that they
are due to some combination of three factors: inadequate surface
roughness model, problems in the RANS turbulence model, and the
unsteady nature of the flow. Nevertheless, these results show that
TDLAS has the potential to observe complex spatiotemporal
oscillations in supersonic flows and then allow comparisons with
CFD simulations to be made. Although it may not be the first choice
for studying shock-train structures (schlieren and velocimetry are
the classics), it may be the only technique that offers the ability to
study these structures in a practical manner in a flight vehicle,
because it can be readily miniaturized.
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